好心情说说吧,你身边的情绪管理专家!
好心情说说专题汇总 心情不好怎么办
反函数课件
在老师日常工作中,教案课件也是其中一种,老师在写教案课件的时候不能敷衍了事。写好教案,课堂教学更有效。我们为您搜集整理了“反函数课件”的相关资料下面请您查看,希望这些建议对您有所启示别忘了收藏一下哦!
反函数课件 篇1教学目标
依据教学大纲、考试说明及学生的实际认知情况,设计目标如下:
1、知识与技能:
(1)了解互为反函数的函数图像间的关系,并能利用这一关系,由已知函数的图像作出反函数的图像。
(2)通过由特殊到一般的归纳,培养学生探索问题的能力。
2、过程与方法:由特殊事例出发,由教师引导,学生主动探索得出互为反函数的函数图像间的关系,使学生探索知识的形成过程,本可采用自主探索,引导发现,直观演示等教学方法,同时渗透数形结合思想。
3、情感态度价值观:通过图像的对称变换是学生该授数学的对称美和谐美,激发学生的学习兴趣。
重点难点
根据教学目标,应有一个让学生参与实践,发现规律,总结特点、归纳方法的探索认知过程。特确定:
重点:互为反函数的函数图像间的关系。
难点:发现数学规律。
教学结构
教学过程设计
创设情景,引入新课
1、复习提问反函数的概念。
〇学生活动学生回答,教师总结
(1)用y表示x
(2)把y当自变量还是函数
提出问题,探究问题
一、画出y=3x-2的图像,并求出反函数。
●引导设问1原函数中的自变量与函数值和反函数中的自变量函数值什么关系?
〇学生活动学生很容易回答
原函数y=3x-2中反函数中
y:函数x:自变量x:函数y:自变量
●引导设问2在原函数定义域内任给定一个都有唯一的一个与之对应,即在原函数图像上,那么哪一点在反函数图像上?
〇学因为=3-2成立,所以成立即(,)在反函数图像上。
●引导设问3若连结bg,则bg与y=x什么关系?点b与点g什么关系?为什么?点b再换一个位置行吗?
〇学生活动学生根据图形很容易得出y=x垂直平分bg,点b与点g关于y=x对称。学生证法可能有ob=og,bd=gd等。
▲教师引导教师用几何花板,就上面的问题追随学生的思路演示当在y=3x-2图像变化时(,)也随之变化但始终有两点关于y=x对称。
●引导设问4若不求反函数,你能画出y=3x-2的反函数的图像吗?怎么画?
〇学生活动有了前面的铺垫学生很容易想到只要找出点g的两个位置便可以画出反函数的图像。
●引导设问5上题中原函数与反函数的图像,这两条直
查看更多>>老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是应对新课程改革和新教育发展的必要手段,好的教案课件是怎么写成的?本篇文章是经过精心挑选的一篇优秀的“函数的课件”作品,希望阅读本文能够增加您的知识和见识!
函数的课件 篇1目标:
1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。
2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。
重点难点:
重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。
难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。
教学过程:
一、创设问题情境
如图,某建筑的屋顶设计成横截面为抛物线型(曲线aob)的薄壳屋顶。它的拱高ab为4m,拱高co为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?
分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。
如图所示,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1)
因为y轴垂直平分ab,并交ab于点c,所以cb=ab2 =2(cm),又co=0.8m,所以点b的坐标为(2,-0.8)。
因为点b在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函数关系式是y=-0.2x2。
请同学们根据这个函数关系式,画出模板的轮廓线。
二、引申拓展
问题1:能不能以a点为原点,ab所在直线为x轴,过点a的x轴的垂线为y轴,建立直角坐标系?
让学生了解建立直角坐标系的方法不是唯一的,以a点为原点,ab所在的直线为x轴,过点a的x轴的垂线为y轴,建立直角坐标系也是可行的。
问题2,若以a点为原点,ab所在直线为x轴,过点a的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?
分析:按此方法建立直角坐标系,则a点坐标为(0,0),b点坐标为(4,0),oc所在直线为抛物线的对称轴,所以有ac=cb,ac=2m,o点坐标为(2;0.8)。
查看更多>>老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“反比例函数课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!
反比例函数课件 篇1k/x1,y2>k/x2,则有y1>y2。
3. 奇偶性
反比例函数的图像关于y轴对称,因此它是一个奇函数。
4. 渐进线
当x足够大或足够小时,反比例函数的图像近似于x轴和y轴,分别被称为横渐近线和纵渐近线。
5. 最值
在定义域内,反比例函数没有极大值和极小值。
四、反比例函数的应用
反比例函数在生活中有很多应用,例如:电功率与电阻、两车防碰撞距离与制动距离的关系、物体离光源距离与光强度的关系等等。
其中,物体离光源距离与光强度的关系是一种最常见的反比例关系,我们称之为“光强反比距离定律”。它的表述为:光源辐射的可见光的强度与光源距离的平方成反比,即i∝1/d^2。
这个定律的应用非常广泛,例如在照明工程中,可以通过调整灯具的高度、角度和类型等来满足不同的场合需求。在摄影中,我们需要注意拍摄主体与光源的距离和光源大小等因素,保证照片的曝光正确,色彩鲜明。
总之,反比例函数是数学中一个十分重要的函数类型。对反比例函数的性质和应用有着深入的了解,将有助于我们更好地应用它们。
反比例函数课件 篇2一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的'能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河
查看更多>>每个老师都必须认真准备自己的教案课件,因为教案课件是教学工作的必要起点。它不仅能够促进新老师的自信心,还能够帮助教师深入理解教学内容。在网上,有许多值得推荐的优秀教案课件。励志的句子为您准备的“函数课件”绝对会让您眼前一亮,期望它能为您提供帮助!
函数课件 篇1人教版 数学 八年级 上册
第十四章
一次函数
§14.1.2 函数
教
案 设 计 说 明
江西省赣州市文清实验学校 谢志华
【教学设计说明】
这节课本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。整个教学过程突出以下构想:(1).创设情境,引人入胜
首先根据学生的认知基础,播放一组生活中熟悉的体现运动变化的课件视频与图片,激发学生的求知欲,使学生感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。
(2).过程凸现,紧扣重点
函数概念的形成过程是本节的重点。所以本节突出概念形成过程的教学。首先列举学生熟悉例子,引导学生从实例中观察分析探索变量之间的规律,抽象出函数的概念。然后提出注意问题,帮助学生把握概念的本质特征,再通过生活中的函数举例进一步理解函数的概念,最后引导学生运用概念并及时反馈,同时在概念的形成过程中,着意培养学生观察分析抽象概括的能力。引导学生从运动变化的角度看问题时,向学生渗透唯物主义观点的教育。(3).动态显现,化难为易
本节课的难点是理解函数概念。教学活动中充分利用多媒体有声有色有动感的画面,使抽象的问题形象化,静态方式的动态化,直观深刻地揭示函数概念的本质。不仅叩开学生的思维之门,也打开他们的心灵之窗,使他们在欣赏享受中,在美的熏陶中主动地轻松愉快地获得新知。
(4).例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维,加强学科间的渗透,知识间的联系,也增强学生学数学的意识。
函数课件 篇2当______时,随的增大而增大;
当______时,随的增大而减小.
当______时,随的增大而增大;
观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。
1. 函数的图象可由的图象向平移
查看更多>>